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ABSTRACT
Canonical correlation analysis is a type of multivariate linear statistical
analysis, first described by Hotelling (1935), which is used in a wide range
of disciplines to analyze the relationships between multiple independent
and multiple dependent variables. We argue that canonical correlation
analysis is the method of choice for use with many kinds of datasets
encountered in human factors research, including field-study data, part-
task and full-mission simulation data, and flight-recorder data.

Although canonical correlation analysis is documented in standard
textbooks and is available in many statistical computing packages, there
are some technical and interpretive problems which prevent its routine use
by human factors practitioners. These include problems of computation,
interpretation, statistical significance, and  treatment of discrete variables.
In this paper we discuss these problems and suggest solutions to them. We
illustrate the problems and their solutions based on our experience in using
canonical correlation in the analysis of a field study of crew-automation
interaction in commercial aviation.

INTRODUCTION
Canonical correlation analysis (CCA) is a type of multivariate linear statistical analysis,
first described by Hotelling (1935). It is currently being used in fields like chemistry,
biology, meteorology, demography, artificial intelligence, cognitive science, political
science, sociology, psychometrics, educational research, economics, and management
science to analyze multidimensional relations between multiple independent and multiple
dependent variables.
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Although CCA is documented in standard textbooks, and is available in statistical
computing packages, there are certain technical and interpretive problems which prevent
its routine use by human factors practitioners. These include problems of computation
(matrix singularity, computer time requirements), interpretation (visualization,
examination of individual cases), and statistical significance (significance levels and
confidence intervals for multidimensional non-normal data, including discrete variables).

In this paper we discuss these problems and some solutions to them. We illustrate the
problems and their solutions based on our experience in using canonical correlation in the
analysis of a field study of crew-automation interaction in commercial aviation. We begin
with a brief description of CCA, followed by a description of our field study and the data
we were analyzing. We describe five specific problems we encountered during the
analysis, along with our proposed solutions to each problem. We conclude with an
assessment of the utility of CCA in the context of a spectrum of analytical methods for
complex, real-world data.

CANONICAL CORRELATION ANALYSIS (CCA)
CCA is an extension of multiple regression to the case of a multidimensional response
measure. As explained by McKeon (1965), most of the familiar methods of linear
statistical analysis, including multiple analysis of variance (MANOVA), discriminant
analysis, and principal components analysis, are special cases of CCA.

CCA is most closely related to multiple regression and to principal components analysis.
CCA differs from principal components analysis (PCA) in that PCA makes no distinction
between independent and dependent variables. CCA differs from multiple regression in
that CCA allows multiple dependent variables; multiple regression allows multiple
independent variables but only a single dependent variable. Therefore, CCA is a
potentially valuable tool in human factors research involving (1) a clear distinction
between independent and dependent variables, (2) multiple dependent variables, and (3)
the potential for multidimensional relations between these two sets of variables. For
example, these conditions often apply to field studies of decision making and
performance, field trials of product or system usability, part-task or full-mission
simulation studies of expert performance, and on-line performance data such as flight
recorder data.

Although the numerical methods required for CCA are much more complex than those
required for computing a bivariate correlation coefficient, CCA can be conceptually
understood in terms familiar from bivariate analysis (Cliff, 1987). CCA computes two
derived (or “canonical”) variables, X and Y, such that the correlation between X and Y is
as large as possible. X is a weighted average of the independent variables, and Y is a
weighted average of the dependent variables. CCA computes several such relations
between independent and dependent variables. Each relation indicates a distinct pattern
that exists in the data. CCA reduces each of these patterns to a bivariate correlation
between just two derived variables, the canonical X and Y variables. This means, for
example, that each such relation can be visually inspected using a familiar bivariate
scatter diagram.
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CCA extends the concept of bivariate correlation in one important way: There may be
several patterns of correlation between the independent and dependent variables, each
pattern corresponding to a different pair of weighted averages. Hence, the results of CCA
are usually reported in terms of two lists of weights (one for X and one for Y) and a
canonical correlation for each pattern. The largest canonical correlation corresponds to
the strongest relation between independent and dependent variables; subsequent
canonical correlations correspond to relations of decreasing strength. The significance of
this feature for human factors research is that we often find different response patterns
under different environmental conditions, for example, different pattern of autoflight
mode selection under different phases of flight. CCA allows these patterns to be
characterized objectively, and allows their relative strengths to be measured. Further, by
using the bivariate scatter diagram mentioned above, CCA allows the analyst to focus his
or her attention on outliers which fail to conform to the dominant patterns; for example,
crews flying manually rather than using fully automatic modes during the en route flight
phase.

FIELD STUDY AND DATASET.
The study involved cockpit observations of crew interaction with the automatic flight
control system of the Boeing 757/767 aircraft during revenue flights by a major U.S. air
carrier. Each data record characterized a change in mode selection, along with a number
of variables describing the conditions under which the change occurred. The initial
dataset used in the CCA analysis consisted of over 1500 records, each characterized by
75 variables. Approximately half the variables had to do with the context or situation, and
the other half had to do with the crew’s response, that is, their choice of an autoflight
mode configuration. A full description of the field study may be found in Degani (1996).

Initial Questions
In general, we were interested in characterizing relations between situations and response
patterns, that is, between the state of the operating environment and human action (mode
selection). The value of using CCA in this case derived from its unique suitability for
finding patterns in large datasets. We had multiple independent variables which
characterized operational situations (ATC clearance given, captain vs. first officer flying,
distance from airport, altitude, ATC facility, clearance given, departure and destination
airports), as well as multiple dependent variables consisting mainly of categorical
variables used to describe the crew’s selection of autoflight modes. In addition to
characterizing patterns of situation-response relations, we wanted to be able to recognize
unusual cases (outliers), in order to focus our analysis on those individual cases which
might illuminate unusual crew behavior or crew error. Finally, by using CCA for this
initial data-reduction analysis, we used  both the typical behavior patterns and atypical
cases (outliers) as points of departure for developing dynamic models of crew-automation
interaction (Degani & Kirlik, 1995).
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PROBLEMS AND PROPOSED SOLUTIONS

Redundant variables
The first problem we encountered was that the correlation matrix for the original
variables was singular. This is a common problem when the number of variables is
large—it simply means that some of the variables are redundant. It is difficult, however,
to determine by inspection alone which variables are redundant. We used several
methods to attack this problem, but the best overall solution was to use cluster analysis
prior to the CCA.

Cluster analysis (Jardine & Sibson, 1971) is a way of analyzing a correlation matrix
which is complementary to CCA. Whereas CCA emphasizes global patterns, cluster
analysis works “bottom up” by aggregating the most highly inter-correlated sets of
variables first, and then working up to larger clusters which are less tightly inter-related.
As a result, the first clusters identified the most likely sources of redundancy. As a side-
benefit, the largest clusters allowed us to check the robustness of the CCA results (since
cluster analysis and CCA are quite different mathematically).

Statistical significance
We used CCA as part of a spectrum of analytical tools. Therefore, it served to direct
attention to patterns and to deviations from those patterns. We did not intend to place
undue weight on the “statistical significance” of the CCA results. Nevertheless, we were
interested in estimating the stability of the computed canonical correlations, and this
required the calculation of standard errors.

The sampling theory for CCA is complex and assumes multivariate normality, an
assumption far from the reality of our data: most of our dependent variables were
discrete. Therefore, we turned to a well-known resampling method—the jackknife
method—for estimating standard errors and confidence intervals (Efron & Tibshirani,
1993). We found the jackknife to be conceptually straightforward, though
computationally demanding (see below).

The related problem of estimating the significance level of our canonical correlations
called for a related solution—the use of randomization tests (Edgington, 1987).
Resampling methods, such as the jackknife and the randomization test, are becoming
more familiar and accepted; their detailed description is beyond the scope of this paper
(see Peterson, 1991; Simon & Bruce, 1991).

We will, however, mention some of the computational problems deriving from our use of
the jackknife and randomization methods. For complex analyses like CCA these
resampling methods require fast computers and special techniques, as they necessitate the
iterative solution of hundreds of matrix factorizations. Our programs were pieced
together from library routines (Koeckler, 1994) and integrated using the Icon
Programming Language (Griswold & Griswold, 1996), a high-level interpreted language.
We also used a great deal of time-consuming check code. A jackknife analysis of 897
cases and 50 variables ran on a Pentium-based laptop in a little over three hours.
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Interpretation and Visualization
Our final problem concerned interpretation of the results. We tried to find graphical
methods which would help us understand and explain the multidimensional patterns
found by CCA. These patterns are important because they help the analyst define, in a
data-driven way, the most important environmental conditions and their corresponding
effects on human action. One of the most helpful suggestions we found was due to Cliff
(1987), who suggests interpreting structure correlations rather than weights. Structure
correlations are the correlations of the X canonical variate with each of the original
independent variables, and of the Y canonical variate with each of the original dependent
variables. In this way, the somewhat mysterious canonical variates can be interpreted in
terms of their correlations with the original variables. We then used two graphical
methods to depict the pattern of structure correlations and to highlight deviations from
the pattern and outliers (see Figure 1).

DISCUSSION AND CONCLUSIONS
CCA is the method of choice when dealing with multivariate dependent variables in a
context otherwise suitable for multiple regression. CCA is best used as part of a suite of
analytic methods. The full suite should include cluster analysis, state-transition (Markov)
and dynamic modeling, graphical methods, and other statistical methods (Degani, 1996;
Degani, Shafto, & Kirlik, 1995; Degani & Kirlik, 1995). Resampling methods may be
used to compute confidence intervals and significance levels of canonical correlations.
Structural correlations are helpful in interpreting the results of CCA, and simple graphical
techniques can be used to understand and explain the results. CCA is capable of
describing in an objective, data-driven way some of the complex patterns in data from
field studies, simulations, and controlled experiments on human-machine interaction. It
directs the analyst’s attention to the main patterns in the data, as well as to the important
deviations from these patterns.
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Figure 1. “Helio” chart

The relative size of structure correlations is indicated by the relative length of the bars extending
toward the circumference (positive correlations) or toward the center (negative correlations). This
very strong pattern indicates flight conditions (X variables) of descent with a “descend to altitude”
clearance from Approach Control. This pattern is correlated with a response pattern (Y variables)
of autopilot, “Flight Level Change” (FLCH) mode, cruise, and “Go-Around” mode armed; and
“vertical Navigation (VNAV) mode and Thrust mode “Climb” disengaged. The plot in the upper left
corner of the graph is the corresponding bi-variate canonical correlation. The relationship
between the two composite variables (X and Y), plotted here in standard units, suggests a strong
overall pattern (r=0.95). The few outliers indicated by the dotted lines need to be examined
individually.
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